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The response of a contained rotating fluid to a small, abrupt change in the rota- 
tion rate is analysed by multi-scaling methods. The procedure makes use of 
the fact that three different physical processes (inertial oscillations, spin-up 
response, diffusion) give rise to three different time scales. Since the flow is 
known to have a boundary-layer character, the variables are derived into interior 
and boundary-layer parts. The pertinent parameter separating the magnitudes 
of the amplitudes and the different time scales is the square root of the Ekman 
number E4, so an expansion in powers of E* is used. The solution for a homogene- 
ous fluid is derived first and is shown to be consistent with the solution of Green- 
span & Howard (1963). The results are given in two forms: one is a direct deduc- 
tion of the expansion method and is valid to O(E);  the other is obtained by 
regrouping the terms to derive a form apparently valid for indefinitely long 
times. When the fluid is stratified, the physical structure of the system is sub- 
stantially more complicated, and so is the analysis. Exact results can be obtained 
for the case where the buoyancy N and the rotational s2 frequencies are the same. 
For the general case P = N / f i  $. 1, results valid for t B 1 can be obtained (where 
t is measured in units of Q-l). In  both cases the exact lowest-order solution for the 
interior can be derived since it is independent of short time t .  For the stratified 
fluid the elementary spin-up solution of Holton (1965) is part of the solution a t  
O(E4). The remaining part includes the long-time behaviour towards which the 
system tends as diffusive processes become dominant. The formulation of the 
long-time problem is complete a t  O ( E ) ,  but parts of it emerge from the analysis 
a t  lower order, and it is necessary to treat the lower-order system to obtain a 
consistent formulation a t  O(E). In  particular, it  is possible to show that the 
thermal boundary condition, which does not affect the elementary spin-up 
solution, should be satisfied only by the long-time part of the problem. The com- 
plete, lowest-order responss of the system includes a diffusive part which is 
quantitatively significant even for times of the order of one spin-up time. It is 
suggested here that the diffusive contribution may be responsible for parts of the 
discrepancy between elementary spin-up theory and recent experiments. 

1. Introduction 
The spin-up process, a term describing the response of a contained, uniformly 

rotating fluid to an abrupt change in the rotation rate of the container, has 
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received considerable attention in the literature, because of its importance to 
transient geophysical flows (see Benton & Clark 1974 for an excellent review). 
The present paper outlines multi-timing analyses of the linear problem for the 
cases where the fluid is homogeneous and where it is stratified. Effects due to side- 
wall boundaries are omitted. 

Using an effective combination of mathematical and physical reasoning, Green- 
span & Howard (1963) solved the homogeneous problem by a direct application 
of Laplace transform theory. They presented the complete solution in the form 
of an inverse Laplace transform; they aIso exhibited the salient features of the 
flow with simple, approximate, analytical expressions. 

One of the important results in the published solution is that the fluid responds 
to the change in rotation via processes that involve three widely separated time 
scales. Ekman layers are established in a time measured by the inverse of the 
rotat'ion rate Q-l. The longest time scale is determined by diffusion; it is given by 
L2/v ( L  is the half-depth of the container and v is the kinematic viscosity). 
This long time scale can also be written in terms of the Ekman number 

4q = v / Q D  as E-1 Q-1. 

The intermediate time scale is the logarithmic mean of the above two and is 
E-4Q-l. The fluid processes that are associated with this intermediate time are 
those that effectively contain the spin-up process. As Greenspan & Howard have 
shown, diffusion serves only to dissipate the residual, weak, inertial oscillations. 

Once one recognizes the existence of separated time scales, a multi-timing 
treatment of the problem is strongly suggested. We have carried out such an 
analysis and report the results for the homogeneous problem in $$3 and 4. 
The present analysis yields no new information about the physics, but it sheds a 
good deal of light on the method of approximating the exact solut,ion by means 
of a multi-scaling procedure. In  particular, zero-, first- and second-order approxi- 
mations to the interior azimuthal velocity are obtained. The results indicate that 
the expansion in powers of Et is not uniformly valid in time. But, by regrouping 
and rewriting the results, we obtain a higher-order form of the solution of Green- 
span & Howard that is uniformly valid in time and agrees with the multi-scaling 
expansion up to O(E). This procedure for the homogeneous problem is important, 
because it clarifies some of the interpretive difficulties of the multi-timing expan- 
sion and makes it easier to understand the results for the stratified case. 

The real power of the multi-scaling approach is felt in the analysis of the spin- 
up of a stratified fluid. This problem cannot be tackled directly, the order of the 
full system of equations being much too high; and it is necessary to make use of 
the simpler subsystems of the multi-scaling method. 

The stratified problem, treated in $95 and 6, differs substantially from the 
homogeneous problem in several ways. The presence of stratification introduces 
physical processes and mechanisms wholly lacking in the homogeneous system. 
In particular, stratification inhibits the penetration of the initial spin-up process 
to a boundary layer whose thickness is determined by F ,  the ratio of the Brunt- 
Vliisala frequency [( -g /p )  (ap/az)]* to twice the rotation frequency 2Q. Earlier 
work on stratified spin-up (Holton 1965; Sakurai 1969; Walin 1969; Buzyna & 
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Veronis 1971) concentrated on this part of the problem. The multi-scaling analysis 
carried through the initial spin-up time gives results in agreement with the earlier 
ones. In the special cases where the complete problem is tractable, the present 
spin-up solutions also include higher frequency inertio-gravity waves associated 
with the short-time scales. 

Another distinctive feature of the stratified problem in contrast to the homo- 
geneous case is that the final steady state is structurally different from that 
given by the initial spin-up analysis. The function containing this feature emerges 
from that part of the multi-scaling solution that includes the initial spin-up 
time but it appears as a completely undetermined function of space and (long) 
time at  that order. Its structure is resolved only when the long-time problem is 
solved. 

An associated, interesting aspect of the multi-scaling approach is that the 
boundary conditions for the final steady state are determined by the requirement 
that successive terms of the expansion be of decreasing magnitude. These 
boundary conditions are necessary to obtain the final solution, and would 
normally be formulated as such for the steady problem. However, the order at 
which they appear in the multi-scaling analysis is critical. If they appear a t  too 
low an order, they lead to a contradicti0n.t If they appear a t  too high an order, 
an under-determined problem occurs. It is especially interesting to find that 
the proper boundary conditions emerge unambiguously only when the shortest 
time scale is included in the analysis. 

Although our treatment of the homogeneous problem is for the cylindrical 
geometry of the laboratory experiment, the analysis for the stratified problem 
is for a single harmonic in one horizontal direction. Because of the complication 
introduced by the stratification, we chose to adopt this simplification in the 
horizontal structure, so that we could concentrate on the important physics. 
Even so, the complete problem is not fully tractable, and we had to settle for 
approximate results when F is arbitrary. For the case F = 1, the full lowest- 
order solution can be derived, and we have used the results for that case as a 
check on the approximate approach required for F + I .  

Throughout this paper we avoid treating actual lateral boundaries. The pre- 
sence of lateral boundaries can affect the homogeneous system, by imposing a 
constraint on the lateral structure of inertial oscillations in the interior, a process 
that presumably can be treated by incorporating appropriate Stewartson layers 
at  the side walls in the multi-scaling procedure. But the analysis becomes con- 
siderably more complicated, and we have not carried it through. For the strati- 
fied problem it is known (Sakurai 1969) that different lateral boundary conditions 
can alter the elementary spin-up solution significantly. Here again, the com- 
plications for the full problem are non-trivial. 

t Those who are familiar-with the solutions of Holton (1965), Walin (1969) and Sakurai 
(1969) may recall that no condition on temperature can be specified at the upper and lower 
boundaries. Their solutions satisfy boundary conditions associated only with the velocities. 
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2. Formulation of homogeneous spin-up problem 

ting about the z axis with constant angular velocity R are 
The equations for a viscous incompressible fluid in a co-ordinate system rota- 

aV,/at ,  +v, .VV+ + 2 R k x v *  = - V [ ( P * / p * ) - ~ R 2 ( ~ t + y ~ ) ] + ~ V 2 ~ + ,  
v.v, = 0. 

The auxiliary conditions that describe the spin-up problem between two disks 
are: v, = 0 fort, < 0 and v, = AQk x r+ a t  z+ = k L and for t ,  > 0. The follow- 
ing non-dimensional variables are introduced : 

r+ = Lr, t ,  = Q-lt, v+ = ~ Q v ,  eL2Q2p = (P*/p+)-&Q2(z2, +y;). 

e = AQ/Q is the Rossby number and the unstarred variables are dimensionless. 
Then the equations become 

a v l a t + E ~ . v ~ + 2 k x  v = - V P + E V ~ V  ( V . V  = 0). (2.1) 
E = v/QL2 is the Ekman number. The initial and boundary conditions are 

1 (2.2) 
v = 0 for t < 0, 

v = k x r  at z = & 1  for t>O.J  

We consider the linear, axisymmetric problem (i.e. e = 0 and a/aO = 0). Further- 
more? we can make use of the simple spatial dependence of the boundary con- 
ditions to note that the r-dependence is eliminated if we choose 

u = U(z ,  t )  r ,  w = V(z ,  t )  r ,  w = W ( z ,  t ) ,  p = P(t)  r2 + II(z, t ) .  

Observe that the pressure field is divided into a part dependent on, and a part 
independent of, r .  With subscripts denoting partial derivatives, the equations 
take the component form 

U , - 2 V = - 2 P + E q B ,  V , + 2 U = E E B ,  W t = - I I , + E q B ,  2U+WB=0.  (2.3) 

The initial and boundary conditions are 

‘1 (2 .4)  
U = V = W = O  for t < 0 ,  

U = W = O ,  ~ = i  at z = f l  for t > ~ . )  

Time scales 

We may expect the time dependence to comply with three different physical 
processes. (i) Inertial motions have a dimensional scale of Q2-l. In  dimensionless 
form the time scale is O(1). (ii) Ekman layers and associated Ekman pumping 
are established within a time scale of order 1. The fluid in the interior will be 
affected by the vertical velocity induced by Ekman pumping or suction into the 
boundary layer. In  dimensionless units this induced vertical velocity is O(E4). 
Since a particle of fluid near mid-depth is unit distance from the upper and lower 
boundaries, it will feel the effects of the boundaries in a (non-dimensional) 
time of order E-4. This is the time required for a vertical traverse over unit 
distance by a particle moving with velocity EB. (iii) Diffusion will transmit effects 
of the boundaries to the interior in a time scale O(E-1). 
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Hence, we may expect the time dependence to reflect the three time scales. 
We shall therefore write any variable x as a function of these three times. Thus, if 

t = t ,  7 = Ett ,  T = Et,  (2.5) 

we write any variable x as x(t, 7, T, z) ,  so that 

The equations (2.3) thus take the form 

Interior and boundary-layer variables 

Experience with rotating fluids indicates that, for linear problems of this type, 
the variables are composed of a part that has vertical derivatives of order 1 
throughout the fluid plus a part that has vertical derivatives of order E-3 near 
the upper and lower boundaries, and decays to zero in a distance of order Et 
from these boundaries. We denote the interior part by subscript I and the bound- 
ary-layer part by subscript b. Furthermore, for vertical derivatives in the 
boundary layer we write 

q a z  = T E-$(alag) near z = I ; (2 .8)  

c =  ( 1 ~ z ) E t  near z =  * I .  (2.9) 

a/ac is O( 1 ) )  and 6 is defined by 

Ordering of variables and equations 

Since time scales and spatial derivatives have magnitudes related to integral 
powers of E*, we shall expand all variables and equations in powers of E*. Hence, 
we write for any variable 

x =  X I + X b )  (2.10) 

and (2 .11)  

The formal problem can now be reduced t’o a hierarchy of problems. For the 
interior variables we have 
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For the boundary-layer variables near z = - 1 the equations take the form 
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' n t  + O h - l ) r  + 0 ( n 4 T  - ' q ~  = 0n6[' 

t t  + p(n-1)r + f l n - 2 )  T + 2 o n  = $nt;C, 

(2.13 a)  

(2.13 b)  

(2 .13~)  

20n-l+lqn6 = 0, (2.13d) 

where, since pn is independent of 5 and must decay as 6 -+ co, it must vanish 
identically . 

These equations are valid for n = 0, 1,2, . . . . Wherever a negative subscript 
is encountered the variable is to be replaced by zero. Instead of writing the 
boundary-layer system near z = 1, we make use of the obvious vertical symmetry 
of the problem to impose boundary conditions on the interior variables at  

z = 0. Thus, Un, = V,, = W, = 0 at z = 0. (2.14) 

Hence, the domain of interest is 0 > z 

'(n-l)t + ' fn-9. + W(n-3) T = - ring + @(n-1) 5 5 7  

- 1. 
The boundary conditions (2.4) at z = - 1 now become 

U i + o z  = 0, W i +  @: = 0, Vt+ pt = 1, V:+ ri = 0 for n > 0, (2.15) 

where superscript 0 denotes the boundary value at  z = - 1 .  All variables vanish 
fort < 0. 

3. Solutions for homogeneous fluid problem 
Zero-order system 

Equations (2.13c, d )  for n = 0 yield w, = 0, wo6 = 0, so that no and Po vanish, 
since they must decay as [+ co. Thus, from (2.14) and (2.15), we note that Po 
must vanish at  z = 0, - 1. Hence, W, can be a solution of the zero-order system 
only if it  has the form 

m 
IV, = C sin nnz [An(7, T) sin 3t + B,(T, T) cos 2t] (3.1) 

1 

with A,(O, 0) = B,(O, 0) = 0. These are free solutions. A form similar to  (3.1) 
appears for each W,. Rather than carry these forms and attempt to treat them 
separately, we observe that, from the original dissipative system (2.3) and (2.4), 
we can show that the mean-square amplitude of any disturbance with zero initial 
and boundary values must vanish identically. Hence A ,  E B, = 0 and W, = 0. 
Furthermore, from (2.12) with n = 0, it  is easy to verify that 

u, = 0, w, = 0, T<, = 0, v, = 0. (3.2) 

v, = v , ( T ,  T). (3.3) 

(3.4) 

o+o, vg=1-v,"=i-V,, (3.5) 

Therefore, the zero-order results are consistent with the Taylor-Proudman 
theorem and, in particular, 

Equations (2.13a, b )  with n = 0 yield the Ekman-layer equations 

o,, - 2E = OOCC, E$ + 20, = qcc, 
with boundary conditions from (2.15) - 
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where we have used the results (3.2) and (3.3) in (3.5). The solution to this system 
is most easily derived by writing $o = oo+iq, so that (3.4) becomes 

Jot + 2i$o = $055. 

The solution to this problem is straightforward. It is 

Since (2.13d) with n = 1 yields 

we obtain 

First-order system 

From (3.12) with n = 1 we obtain 

1 UIZt - 2V,, = 0, T&+ SU, = - v,,, 
~ G + w , ,  = 0, ~ z z t t + 4 ~ z z  = 0.J 

The solution for W, must satisfy the condition (2.15): 

1v: = - JT: = -2(1 -V,)S(2t), 

where &(at) is the Fresnel integral defined by 

( 3 . 7 ~ )  

(3.7b) 

(3.9) 

(3.10) 

S(2t) = (sin 2a/(na)B) da. 1: 
Since @! -+ (1 - V,) as t + co, solutions of W, proportional to exp (Zit) must be 
free solutions of the form (3.1). These must vanish identically by the argument 
given earlier. Hence, W,,, must vanish and Mi can at most be a linear function of 
z, which satisfies (3.10) a t  z = - 1 and vanishes a t  x = 0. Therefore, 

w, = 2x(I-v,)fl(2t), u, = - ( l -V , )S(%) .  (3.11) 

Furthermore, from (3.9) V, must be independent of x ,  and we obtain 

v,, = -V,,+2(1-V,)S(3t). (3.12) 

In  order that our expansion V = V, + Eiv, + . . . remain uniformly valid, we 
require that V, be bounded as t -+ co. We shall impose this condition (sometimes 
called the non-secularity condition) by requiring simply that V,,+ 0 as t -+ 00. 

Then (3.12) yields 
&,+v, = 1 (3.13) 

or V, = 1 - f ( T )  exp ( -  7) (f(0) = 1). (3.14) 
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Hence, the equation for V, provides a partial solution for V,. At this level the first- 
order variables are 

( 3 . 1 5 ~ )  U, = - f (T)  exp ( -  7 ) X ( 2 t ) ,  

(3.15 b )  

W, = 2z f (T)  exp ( - 7 )  X(2t).  ( 3 . 1 5 ~ )  

The arbitrary function of 7 and T arising from the integration of (3 .12)  is part 
of a free solution which, when taken with its corresponding boundary-layer part, 
can be shown to vanish because of the argument given earlier for free solutions 

Boundary layer at first order 
of w,. 

With n = 1 (2 .13a7b)  yield - o,, - 2 q  = olC5 - o,,, qt + 2 0 ,  = qC5 - &,; (3 .16)  

or, in terms of 6, ( = Ol + iq), 
At+ 2 G 4  = A c C -  $0,. 

The boundary conditions become 

(3 .17)  

$0 1 - - -4: = -$,. (3 .18)  

The last equality is a consequence of the fact that U, and V, are independent of z. 
The solution to the 6, problem is considerably messier than the $o problem. 

Since our primary goal is to obtain the boundary condition necessary for V2, 
we can take the Laplace transform of $1 in time and postpone t,he inversion until 
it is required. Writing L($,) = 6, we obtain 

s is the transform variable. Furthermore, from (3 .9 )  and (3 .18)  we have 

(3 .19)  

(3 .20)  

It,, is derived from the Laplace transform of ( 3 . 1 5 ~ ) ;  it  is 

- 
ItlZ =y exp ( - 7 )  [(s - 2 i ) - ~  - (s  + 2i)-t l .  (3.21) 

A Laplace transform, then integration of (2 .13d)  from 5 = 0 to 5 = 03, yield 

and the inverse Laplace transform gives 

@'! = f ( T )  exp ( -  7 )  ( t -  a )  J o ( 2 a )  d a  + 1 - cos 2t 

Jo is the zero-order Bessel function. 
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Second-order system 

Setting n = 2 in (2.12) yields 

1 
J 

u,, - 2K2 = 0, P;, + zu, = - v,, - q,, 
2uz + w, = 0, w,,,, + 4KBZ = 0. 

(3.24) 

Once again we can conclude that W, is a linear function of z. The boundary value 
a t  z = - 1 is given by -m2 a t  f = 0,  so that W, = z q ; .  Hence, we can substitute 
known values for each term with subscript 0 or 1 in the equation for V,, in (3.24), 
to obtain 

Fit = f(T) exp ( - T) X(2a) da - t + ZtS(2t) - 2 (t - a )  J,(2a) da  + 1 - cos 2t 

+ f T e x p ( - ~ ) .  (3.25) 

We shall eliminate the most serious secular t,erms from V, by requiring? 

t-m limt-l/;V,,dt = 0. (3.26) 

The only terms that do not vanish naturally over the infinite time interval in 
(3.25) are those that have a finite value asymptotically as t -+ co. Thus, taking the 
asymptotic limit of Ktin (3.25), we find 

ti, -+ exp ( - T) [ fT + sf] - exp ( - T) f [(t/n)& + 11 cos 2t. (3.27) 

When (3.27) is substituted into (3.26), we find that the terms involved in the 
second bracket vanish because of the averaging. The first term does not; and our 
.requirement for a uniformly valid solution means that we must take 

fT+$f = O .  (3.28) 

Sincef(0) = 1, the solution of (3.28) is 

f = exp (-ST). (3.29) 

Hence, our solutions for V,, and V, are 

V, = l-exp(-T-$BT), (3.30a) 

(3.30 b) 

V, = exp ( - 7 - $5") 2t (t -a) [sin 2a/(na):] da  ( L 
-J: (t - a ) 2 J 0  (2a)da- it2+ i t  - & sin 2t . ( 3 . 3 0 ~ )  I 

The total interior swirl velocity to O ( E )  is 

v, = v,+EtY,+EV,. (3.31) 

t Condition (3.26) is somewhat weaker than the requirement that V', + 0. There can be 
growing oscillations, as long as they d o  not contribute to the mean time behaviour. 
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4. Discussion of homogeneous solution 

V, are substituted. We obtain 
It is instructive to rearrange the terms in (3.31) when the values of V,, V, and 

V, = 1 - exp ( - 7- $T) [ 1 +  Ebt + QEt2 +$Et] 

+ 2 exp ( - 7- $T)/' [sin 2a/(na)4] [l + Ett + +Et2 - 1 -Eta - +Ea2] da 
0 

+ E exp ( - 7 - fT)Jt ( t  - [ [sin 2a/(7ra):] + 2 cos 2a - J,,( 2a)] da. (4.1) 
0 

Now, to the orders considered here, we have 

1 +Eh+ $Etz+$Et = exp ( r  + fT), 
1 + EBt + iEt2 = exp r,  

1 +Eta + iEa2 = exp a;  

and (4.1) can be rewritten as 

+ E e x p ( - ~ - f T )  ( t - a ) 2 [ s i n 2 a / ( n a ) ~ + 2 c ~ ~ 2 a -  Jo(2a)]da. (4.3) 1: 
For large times, the term in (4.3) with coefficient E tends to 

Eexp ( - 7 - $T) [$t + & - 4 sin 24. (4.4) 

Of the terms in (4.4), the first is obviously the most important. Since tE = T, 
we have $tE = $T. The solutions given above, as well as the homogeneous solu- 
tion, suggest that $T be written as exp ($T) - 1 (correct to O(E)) ,  so that 

exp ( -  7-fT) ($T) = exp ( -  7 -$T) (1  +QT - 1) 

= exp ( -  7- fT)(exp ($T) - 1) .  (4.5) 
Hence, to O(E) ,  (4.3) can be rewritten as 

1 15 = exp ( - $T) 2X( 2t )  - 2 exp ( - r )  sin 2a/(7ra)* exp (Eta)  da 

+exp ( - r )  (1  - exp ( - $T)), (4.6) 

where we have neglected terms whose amplitude is always less than E exp ( - 7). 
Equation (3.18) of Greenspan & Howard can be rewritten as 

V, = 2S(2t) - 2 exp ( - 7) sin 2a/(na)B exp (E4a) da. /: (4.7) 

Hence, our result provides a long-time correction to theirs. Since (4.7) contains 
the essential physics, the correction in (4.6) is of no interest physically; but it 
does add the proper detail as t -+ E-l. 

We make two observations about the solutions obtained. (i) For t < E-t 
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the amplitude of V, is O(E4).  This can be seen by expanding the exponentials 
in (4 .7)  in Taylor series, keeping only the linear terms, so that, for r < 1 ,  

V, = 2E9 [( t  - a) sin 2a/(na)4] da. 1: 
Thus, V, starts off as O(E9),  and becomes O(1) only as t -+ E-3. An even simpler 
form can be obtained for 0 < t < E-3, when the asymptotic limit of V, is given by 

V, --f Ef[ t  - - $(sin 2t/(nt)  &)I. (4 .9)  

The growth of V, to O( 1)  in a time of O ( E - f )  is clear even though the approxima- 
tion is not really valid at t = E-9. We also see that the amplitude of the inertial 
oscillations is O(E4).  Hence, initially the oscillations have the same amplitude as 
the spin-up response; but as t --f E-4 they are relatively less important. (ii) Our 
formal expansion appears not to be uniformly valid, because V, contains a term 
that goes asymptotically like t* sin 2t exp ( - r - $T). Hence, for t x E-l we 
have EK > EBV,. However, when we regroup the different terms for 15, as we 
did in (4 .1) ,  and rewrite them as in (4 .2 ) ,  we obtain the result (4 .3 ) ,  which has no 
apparent non-uniform behaviour for large times. Although the regrouping (4 .1)  
and the approximations (4 .2 )  are not unique, our procedure is strongly supported 
by the appearance of the same types of exponentials in the other terms. The fact 
that our final result agrees with the Greenspan & Howard solution is an added 
indication that the procedure is correct. 

As for the expansion procedure itself, we observe that the structure that emer- 
ges from the analysis is a step-by-step approximation to the correct solution. The 
apparent non-uniform character of the expansion is contained also in the approxi- 
mate representation of the Greenspan & Howard solution, if one tries to use 
their approximation beyond the indicated time. Thus, to O ( E ) ,  the solution (3 .31)  
together with (3 .30)  is as good as those given by (4 .6 )  or (4 .7 ) .  The closed forms 
of the latter look better; but these are also valid only for times up to O(E-l) .  
It is possible, of course, that (4 .6 )  is valid for much longer times, but there is no 
way of knowing this without including longer times (E-4, E-2, etc.) in the expan- 
sion and carrying out the analysis. 

The multi-timing analysis for the damped harmonic oscillator (Nayfeh 1973) 
exhibits many of the features obtained above, but in a much simpler context 
where the exact solution is known. The obvious choice for lowest-order time is the 
frequency of the undamped oscillator. In  the exact solution the real frequency is 
modified by the damping, and it is this modification that emerges with the higher- 
order corrections of the multi-timing method. But in this case, too, the first- 
order results contain the essential physics. 

Another aspect of the spin-up solution is that we cannot be sure that the multi- 
scale procedure works with a problem that has an expanding space scale. We 
know that the prototype transient Ekman layer (with a spatially uniform stress 
applied a t  the surface from time t = 0 )  yields a response whose effects penetrate 
infinitely far into the fluid for sufficiently long time. In  particular, the horizontal 
velocity decays as cexp ( - g2/4t). I n  the present problem, if we integrate this 
expression from 6 = 0 to 6 = E-9 (the latter limit being as close to 00 as 6, in fact, 
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approaches), we obtain the results derived above for @$. However, for t N E-l and 
N E d ,  the argument of the exponential is O( 1).  Hence, the evaluation should 

not really be made a t  infinity, since 6 never exceeds E-b and t does extend for- 
mally to E-l. This point is raised again in the.stratified problem, where we present 
an argument to eliminate penetration of thermal effects to the interior via bound- 
ary-layer processes. In  the homogeneous case, boundary-layer penetration does 
not seem to occur. 

An addit,ional consideration is that the dependence of the lowest-order vari- 
ables on the r and T time scales is obtained from the analysis in the asymptotic 
range t + co. This procedure is standard for multi-timing analysis. It means that 
the long-time behaviour for the lowest-order quantities can be obtained, even 
when it is not possible to derive the detailed, short-time solution for higher- 
order variables. I n  the analysis for the general stratified problem we have to 
resort to the asymptotic analysis because we cannot obtain the complete solution. 

Finally, we point out that our results for the functional form of the 7 and T 
time scales can be obtained by neglecting the smallest time scale t from the out- 
set. This simpler procedure yields solutions that are proportional to 

exp ( - 7 - $T), 
just as the more complete analysis does. From the analysis of the stratified 
problem, it appears that the simpler procedure works for the homogeneous case, 
because the spatial form of the elementary spin-up solution coincides with the 
final, steady-state spatial structure. One cannot proceed in the same formal way 
and obtain the correct 7 and T time behaviour for the stratified problem. We shall 
return to this point later. 

5. The stratified spin-up problem 
Although the procedure for stratified spin-up is essentially the same as for the 

homogeneous case, the mathematical analysis is much more complicated. 
In  general, we cannot solve the complete problem a t  each order. But the essential 
lowest-order structure for the velocity, pressure and temperature can be obtained 
for t,ime scales through the diffusion time. For the general case, we shall focus 
our attention on this part of the problem. 

The special case F = 1 ( F  is the ratio of buoyancy frequency to rotational fre- 
quency) can be analysed in detail a t  each step. The reason for this is that the 
inertio-gravity waves generated are isotropic when F = 1, and the time and space 
dependence are separable. The results for this special case are inserted in the 
analysis since they serve as a partial check on the asymptotic treatment for 
arbitrary values of F .  

Because of the greater complexity of the stratified problem we shall consider 
the simplest model. The basic state for t < 0 is solid-body rotation (Eddington- 
Sweet flow is neglected) and the fluid is stably stratified with a constant tempera- 
ture gradient 4Ag/L (where 4AG is the imposed temperature difference over the 
half-depth L). The fluid is Boussinesq. For t > 0 the upper and lower boundaries 
are moved with velocity v = V ,  cos (kx , /L ) .  Since t,he forcing is independent of 
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y, the problem is two-dimensional. The magnitude of V, is taken to be small (i.e. 
the problem is linear). We use the following definitions for dimensionless vari- 
ables (asterisks refer to dimensional variables) : 

V* = &v, r* = Lr, t = Qt,,8, = 2AO*8, 

P = rP* -P* Q2+(x2, +Y2,)/P* LJG 52. 
p+ is the constant reference density of the fluid. 2AO* is the magnitude of the 
temperature difference generated by the velocity field. Finally, using the same 
three time scales as for the homogeneous problem, we write the non-dimensional 
equations in the form 

q+-E*U,+EUT-2V = -kP+EV2u,  (5.1a) 

v+E&E+EVT+2U = EV2V, (5 . lb )  

W,+E&W,+EWT-2FO = -P,+EV2W, ( 5 . 1 ~ )  

( 5 . l d )  

w, = k U .  ( 5 . l e )  

The definitions of the variables are such that the factor 2 appears, as shown. The 
horizontal spatial dependence is taken care of by the relations 

0, + E t a ,  + EOT + 2FW = E / a  V 2 0 ,  

(u, v) = (U, V )  cos kx, (w,p, 8)  = ( W ,  P ,  0 )  sin kx, 
so that all upper-case variables are independent of x. The non-dimensional 
parameters are: Prandtl number d = V / K  ( K  is thermometric diffusivity); inter- 
nal Proude number 

Ekman number E = v/f2L2. We assume E i  < 
system can be ordered with respect to E t  only. 

0 > z 2 - 1. The boundary conditions are 

< E-9, F < E-3, so that the 

Because of the vertical symmetry of the problem, we consider the half-domain 

U = O ,  W = O ,  V = l ,  a t  z = - 1 ,  t > 0 , 1  

u , = o ,  % = O ,  W = O ,  at z = o ,  t > ~ .  j 
If the boundary heat flux a t  z = - 1 is fixed, we have 

O,=O at  z = - 1 ,  t > 0 .  

If the boundary at  z = - 1 is kept at a fixed temperature, 
(5.3) 

0 = 0  a t  z = - 1 ,  t > 0 .  (5.4) 

As in the homogeneous problem, the variables are divided into interior and 
boundary-layer parts, and each part is expanded in powers of E4. Also, bound- 
ary values are indicated by superscript zero. The procedure is the same as before. 
We shall investigate the different orders of the interior equations, and use the 
boundary-layer results primarily to obtain conditions on the interior variables. 
Before undertaking the spin-up analysis, we shall look at the steady-state 
problem. 
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The steady problem 

In  the absence of transient processes, (5.1) reduce to 

- 2 V =  -kP+EV2U,  2U = EV2V,  (5.5a, b) 

(5.5~-e) 

The interior equations (subscript I) a t  lowest order reduce to the geostrophic- 
hydrostatic system 

Substituting (5.6) for V, and 0, in (5.5b, d )  and making use of (5.5e) yields 

- 2 F 0  = - P, -+ EV2 W ,  2F W = E/vV20,  W,  = kU. 

2Vz = kPI, PIz = 2FOI, V,, = FkOI.  ( 5 4  

V2[PIzz - vF2k2PI] = 0. (5.7) 

There is no Ekman pumping a t  orders EO or Eg. One can either go through 
the boundary-layer analysis to show this or one can observe that the interior 
vertical velocity is suppressed up to order E ,  so that there can be no Ekman 
pumping. Hence, the lowest-order boundary conditions (5.2) and (5.3) in terms 
of PI are 

the solution is 
V$ = kP!/2 = 1, O!, = PI,,/(2F) = 0; (5.8) 

(5.9) 1 gF2 cosh Icz cosh (cdFkz) - 
I - k(crF2- 2 [  1) coshk cosh (a4Fk) ' 
P -  

When the boundary temperatures are fixed, (5.4) can be written as 

001 = PXJ(2F) = 0; 
the solution is 

(5.10) 

(5.11) 2 [sinh k cosh (a tFkz)  - a*F sinh ( d F k x )  cosh kx] 
P -  

I - k[cosh (dFIc )  sinhk- cd Fksinh ( d F k )  coshk]' 

We have derived these steady-state solutions to point out two features. 
(i) Observe that for large k the response of the fluid is confined to a boundary 

layer the thickness of which is (crudely) k-l if 1 < d F  or (a*Fk)-l if 1 > d F .  
The reason for this is that the system is controlled by diffusion, SO that velocity 
variations of small scale imposed a t  the boundaries do not penetrate far into the 
fluid before being wiped out by horizontal diffusion. If k, (r and F are O(l), the 
vertical variation of the response is smoother. 

(ii) The final state to which the fluid tends in the transient problem is given 
by (5.9) or (5.11), depending on the thermal boundary condition. It is especially 
instructive to observe this x dependence because the usual stratified spin-up 
solution has a vertical structure determined by cosh kFz and it bears no resemb- 
lance to the steady-state solution. Therefore, in the stratified problem the usual 
spin-up solution is an intermediate stage through which the fluid must pass 
before approaching the spatial structure of the steady flow. We point this out 
here because the steady-state solution must emerge from the multi-timing 
analysis a t  an order higher than that corresponding to the usual spin-up problem. 
It turns out that this long-time behaviour comes in bits and pieces as the multi- 
timing analysis proceeds until finally a complete boundary-value problem is 
formulated. It helps to know a priori that that is going to happen. 
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Zero-order interior system 

The lowest-order interior equations for the transient problem are 

UOt-SV, = -kG, V,701+2U0 = 0, TI&-2PO0 = -Po,, (5.120.-C) 

w,, = kU,, o,, + 2FW0 = 0. (5.12 d,  e )  

These can be reduced to a single equation in W,, 

L,W,,, - k2L, w, = 0, 

where L, a y t 2  + 4,  L, = a2/at2 + 4F2. 

(5.13) 

(5.14) 

As before, the lowest-order boundary-layer equations yield mo = Po = 0. Hence, 
since W vanishes a t  z = 0, - 1 ,  we note that W, vanishes at z = 0, - 1 ;  and we 
conclude from (5.13) that W, vanishes everywhere. The zero-order interior system 
then reduces to 

(5.15) 

and 2v, = /%Po, 2 P 0 ,  = po,, v, = kFO,; (5.16) 

i.e the flow is geostrophic and hydrostatic and satisfies the thermal-wind relation. 

Zero-order boundary layers 

The dynamical boundary-layer equations a t  zero order form the Ekman-layer 
system, the solution of which for this case is easily verified to be 

Sexp ( - S2/4a) exp ( - %a) 6, = i ( 1 -  da, 2a(7ra)$ 
(5.17) 

where 6, = 0, +iG. As in the homogeneous problem, we need to know m:, which 
can be derived by integrating the continuity equation 

Rc = k0, = k Re 6, 
from zero to infinity. We obtain 

JQ = - k ( l - -  ;kP:) X ( 2 t ) .  

The heat equation in the boundary layer reduces to 

(5.18) 

(5.19) 

( 5 . 2 0 )  

For the fixed temperature case, (5 .4)  yields 6: = -0; = -P&/2F,  so (5.20) 
becomes 

6, = - P:,/(u) erfc (+((t/v)&). (5.21) 

When the heat flux is fixed, (5 .3)  yields a& = 0, so ( 5 . 2 0 )  becomes 

a, = 0. ( 5 . 2 2 )  
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First-order interior system 
From (5.1) we obtain 

Ult-2V, = -kPl, Kt+2Ul  = -&,, W l t - 2 F O l  = -Plz, ( 5 . 2 3 ~ - c )  

(5 .23d ,  e )  

where we have used the results Uo = 0, W, = 0. In  terms of Pl, this system can be 
expressed as 

L, Plzat - L,k2P1t = 4(k2F2Po, - PozzT). (5.24) 

Since Po is independent oft, we can integrate once with respect to t ;  the resulting 
equation has a forcing term on the right-hand side, proportional to t .  Hence, 
in general, Pl will grow linearly in t .  But then the term EtP, exceeds Po after a 
time E-t, and the expansion is not uniformly valid. So we suppress the secular 
terms by requiring that 

Po,,, - kzF2Po, = 0. (5 .25)  

This equation is the same as the one leading to the spin-up solution of Holton 
(1965) .  

@ I t  + 2FW, = - 00,) It;, = kU1, 

We can integrate (5 .25)  with respect to r, to obtain 

Pozz-k2F2Po = Q(T,z). (5 .26)  

Q(T, z )  is an arbitrary function of T and z ,  and vanishes initially. 
To obtain a boundary condition for Po, we evaluate (5 .23d)  a t  z = - 1.  Thus 

Oqt + 2F W i  = - a&, (5.27) 

where O:, = P:,,/2F from (5 .16) .  We use the non-secular condition on 07, and 
require that Oq, -+ 0 as t -+ 00. Then, noting from (5 .2 )  that Wq = - WO,, we use 
(5 .18 )  to obtain 

WO,-++k (1 - 4kP;). (5 .28)  

Hence, as t -+ a, (5 .27)  yields the asymptotic relation 

P&, - k2F2P: = - 2kF2. (5 .29)  

The solution to the boundary-value problem given by (5 .25) ,  (5 .26) ,  and (5.29),  
with Po symmetric in z, includes the usual spin-up solution and can be written as 

cosh (Fkz )  
cosh (Fk)  + 9 ( T ,  2,) 

?fV)  
Po = [I - exp ( -,!AT)] ( 5 . 3 0 ~ )  

with 

y = Fkcoth(Fk), g ( 0 , z )  = 0,  f(0) = 1, gO(T- 1 )  = 2 / k [ i - f ( T ) ] .  (5 .30b)  

The term (2f lk)  [cosh (Fkz)/cosh (Fk)]  can be absorbed into g but we give the 
result as shown, because with f ( T )  = 1 and g = 0,  it has the form of the usual 
spin-up solution (as it must if we ignore T ) .  Except for an initial and a boundary 
value, g is unspecified at  this point. However, it  is helpful to point out here that 
g will eventually contain the steady-state solution. 
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At the next order, we shall need the asymptotic value of W,. From (5.23) we 

L, w,,, - k2L2 w, = 0, (5.31) 

and from (5 .2)  the boundary condition Wp = -@! with PO, given by (5.18). A 
Laplace transform in time and a solution to the transform problem lead to 

have 

A * sinh kz [(s2 + 4F2)/(s2 + 4)]+ 
sinh k[(s2 + 4F2)/(s2 + 4)]8 

w, = - k( 1 - QkP:) X(2 t )  (5.32) 

We have not inverted the transform for arbitrary F. But when F = 1 the solution 
is 

JK = - k( 1 - $kP,O) S ( 2 t )  sinh (kz)/sinh k. (5.33) 

For arbitrary F ,  if we obtain the asymptotic behaviour of W, as t + CO from 
the limiting behaviourt of (5.32) as s -+ 0, we get 

(5.34) W, + - Q( 1 - +kP,O) sinh (kFz)/sinh (kF) .  

First-order boundary buyers 

The dynamical boundary-layer equations at  O( E3) reduce to the Ekman-layer 
equation with two forcing terms 

+ 2i& - cjJ155 = - kP, - &. (5.35) 

The term P, is evaluated from p15 = 2F6, and Q"o, is obtained from (5.17). A 
Laplace transform in time and subsequent solution of the boundary-value 
problem in 5 lead to 

x [exp { - (s + 2i)a <}-exp { - (as)$ [}I. (5.36) 

The last term comes from p, in (5.35) and [@;I = @: for fixed boundary tempera- 
ture and [@:] = 0 for fixed heat flux. 

Again, our main use of 4, will be to obtain a boundary value for W,, which by 
( 5 . 2 )  is W i  = - @'p. We obtain mi by integrating the transform of the continuity 
equation m25 = k Re (6,) from zero to infinity and making use of (5.36): 

[(s+Zi)-$- (as)-q 
 re(------ k(& k4:T + 2k2F[@:] 

(s + 2 i ) t  2s(s + 2i)8 s(as)+ (as - s - 2 i )  

We obtain k& ( =  - k&) from (5.23b), as 

(5.38) 

-1 We shall make liberal use of this Tauberian theorem. For P = 1 the result always agrees 
with the asymptotic behaviour derived from the exact solution, as it does here. 

28 F L M  68 
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$!j, is easily evaluated from (5.32). Substituting (5.38) into (5.37) and expressing 
& in terms of P, yields 

-+-I 1 

2S(S f2 i )+ ik2eT " s 2(s+22) 
x [(s - 2q-4 - (s + 2i)-i] - 

[ (s + 2i)-t  - (as)-h] . I 2k2F [ 0x1 
+ s(as)4 (as - s - 2 i )  

(5.39) 

For F = 1, mi can be obtained directly: 

1 = k2( 1 - @Pg) coth k ( t  - a )  J0(2a)  da + ~ ( C O S  2t - 1) 

(a- 1 )  cos [2t/(cf- l)] 
- +W;,t S(2t) + 2k2[@] ( 4cT 

Second-order interior system 

The interior equations a t  O(E) are 

u,, - 2% = - kP2 - u,,, 
Kt+2U2 = -V,,-v,,+V2&, 

w2, - 2F02 = - P,, - w,,, 
o,, + 2FW2 = - o,, - o,, + a-1v200, 

W2, = kU2; 
or, in terms of P2, 

L,P2cct - k2L2 P2t = S(F2  - 1) we,, - 4(p1,, - k'F'P1,) 

- 4(P0,, - k2P2P,,) + 4V2(a-1P08z- k2F2Po). (5.42) 

(5.41a) 

(5 .41b)  

(5.41 c )  

(5.4ld) 

(5.41 e )  

Once again we apply the non-secularity condition, namely, that the asymptotic 
value of the terms that involve derivatives with respect to short time t vanish. 
On the right-hand side, this condition is also satisfied by qzct (from (5.34)). 
The t,erms that remain must then balance, so we have, in the limit as t -+ 00, 

€ice, - E2F2P,, + POzcT - k2F2PoT - V2(g-1Pozc - E2F2Po) = 0. (5.43) 

The analysis of (5.43) leads to the steady solution, (5.9) or (5.11), and to the 
long-time behaviour of Po. To proceed we require boundary conditions to deter- 
mine the part of Po that is still unknown, namely the forms off(T) and g(T, z )  in 
(5.30). Since (5.43) contains four derivatives in x ,  more boundary conditions are 
required than for the lower-order equations. It is a t  this point that the thermal 
boundary conditions appear effectively for the first time. 
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The remainder of this section is concerned with obtaining the solution to 
(5.43). The discussion is rather involved because some of the issues that arise 
are unfamiliar (at least, they were to us, when we first encountered them) and 
a detailed treatment is necessary to the argument. Our first task is to derive 
boundary conditions to go with (5.43). 

Boundary conditions at second ordcr 

We have already obtained an expression for @ ( - Wi). For the general case this 

boundary value is given by (5.39) in terms of the transformed variable pi; 
but for P = 1 it is given explicitly for v$ by (5.40). For either expression it can 
be shown that, for large t ,  

h 

A and B are non-growing terms involving P: and P&. From (5.39) the limit 
(5.44) is obtained by takings -+ 0 and then inverting. From (5.40) it can be derived 
directly. 

I n  order that ni be non-secular it is necessary that the bracket multiplying 
t vanish. This condition is equivalent to (5.29). An additional condition emerges 
from (5.44). Even with the first bracket vanishing, the term Em! will grow to a 
value larger than EhP? in a time O(E-l), because of the term proportional to 
t4. To keep our expansion valid for times of this order (i.e. for T > 0 )  we must 
require [@:I = 0. I n  the case of fixed heat flux, [O:] = 0, so this term is not present 
in (5.44). However, when the boundary temperature is fixed, [O:] = @:, so we 

(5.45) 
require (3: = P32P = 0 for T > 0. 

T > 0 means that we impose this condition only for the problem associated with 
the long time scale. 

We make two observations. (i) The condition 0: = 0 is identical to (5.10) 
for the steady problem with fixed boundary temperatures. (ii) This condition 
cannot be applied for times O(1). If it were, the first-order problem would be 
overdetermined, as can be seen from ( 5 . 3 0 ~ ) )  where (3: = P&,/2F and P:s f 0. 

When the heat flux is fixed, a different condition is obtained. For this case, 
6, = 0 by (5 .22 ) ,  and the first-order heat equation in the boundary layer can be 
expressed in terms of 6,, as 

( O1g)55 = (GI,), + 2aFlT&. 

The boundary condition (5.3) to this order becomes 

(5.46) 

- 
09, = - @& = - P:22/2P. (5.47) 

The term ““;,5 is evaluated from the continuity equation and from (5.17). The 
solution for a,, is 

O,, = [kFa(  1 - +kP:) - P:,/2F] erfc ($C(t/a)B) + oscillatory terms. (5.48) 
- 

Now, when t is 0(1), the complementary error function vanishes as 6 --f 00. 

But, when t is O(E-l), erfc (<a4/2t*) gives an O(1) contribution for values of 6 
28-2 
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up to E-4. Thus the boundary-layer solution penetrates to the middle of the fluid 
layer. If we were to allow this to happen, our separation of 0 into interior and 
boundary layer parts would break down. Hence, to preserve our adopted pro- 
cedure, we shall require that the term in brackets vanish, i.e. 

k2F2a(2/k - P,") - P,"ss = 0 for T > 0. (5.49) 

This condition is also applied only for long times. When we finally have the long- 
time problem formulated, it will be seen that (5.49) will reduce to the usual 
boundary condition for fixed heat flux for the steady part of the flow. 

It is instructive to observe that (5.49) is required not just to preserve non- 
secular behaviour in time. It removes the penetration of the boundary layer 
into the interior, thus making the problem spatially non-secular. This aspect of 
the analysis is one that we have not encountered in any other problem; it is as- 
sociated wit,h the multi-scaling in time and space. 

For the higher-order problem included in (5.43) we have now derived one 
boundary condition, given by (5.45) for fixed temperature and by (5.49) for 
fixed heat flux. The second condition is obtained from (5.41 d )  evaluated at  the 
boundary. (This procedure is exactly analogous to the one for the first-order 
problem where we derived (5.29) from (5.27).) Thus, 

@it + @ Y r  + O,oT + 2Pwg = r1v20:. (5.50) 

Applying the non-secular condition to 19;) we require 

limt-1 O;,dt = 0. (5.51) 

There are several types of terms in (5 .50) .  Those that would be secular them- 
selves (i.e. the ones with t or t i  as coefficients) have already been taken care of 
by the discussions following (5.27) and (5.44). Those that are proportional to 
t4 cos 2t, or oscillate or decay, are non-secular in the sense of (5.51). The remaining 
terms are those that are asymptotically independent of t ,  and therefore do not 
satisfy (5.51). Obviously, since 0: is independent of t by (5.15), only such terms 
appear in V2@: and @&,. Also, Wg and Oq, contain parts that are independent of 
t. The totaI contribution of these terms must vanish for (5.51) to be valid, so we 
obtain a boundary condition by balancing those terms in (5.50).  

To obtain the appropriate contribution for Wt we could return to (5.44), 
since $@ = - W;, and determine the form of B. However, it  is simpler to observe 
that we are seeking the non-vanishing, non-oscillatory asymptotic form of Wt.  
This can be obtained simply by taking the steady form of (5.35) (since lim -+ 0 ) ,  

l - tm so" 

and evaluating m$ as before. We derive t+w 

wg -+ kZ(J-p0 1 6  OT - LPO). 4 1 (5.52) 

(5.53) 

The terms in (5.50) that must balance in the limit as t + co reduce to 

PO 1217 - k2Y2PO 1 -  - - Sk2F2p0 4 Or -PO Ozr + g-1'72PO 02. 

To summarize the problem, therefore, we must solve (5.43) with the boundary 
condition (5.53), and either (5.45) or (5.49)) depending on whether the boundary 
is at  fixed temperature or fixed heat flux, respectively. 



A multi-scaling analysis of the spin-up problem 437 

Solution 

We first substitute the form (5 .30a)  into (5 .43))  to get 

Pizz, - k2F2p1, = - g,,, + k2F2gT + (T-' gzzZz - k2(o-' + F 2 )  g,, + k4F2g 

where A = 2k'F'(F2- 1) (v-1- I). 

Now observe that all the terms on the right-hand side, except for the last, are 
independent of r. Hence, these must balance, because otherwise PI would be 
secular in 7. Therefore, (5.54) turns into two equations: the first 

cosh (kFz) 
cosh (kF) ' - gzzT + k2F2gT + 0--' g, - k2(g-l  + F 2 )  g,, + k4F2g = - Af (5 .55)  

and the second 
cosh (kFz) 
cosh (kF)  

exp (-,u7). Pbz, - k2F2Pl, = - Af (5.56) 

Because of the symmetry of Pl in x ,  the solution to (5.56) has the form 

cosh (kFx) f A  exp ( - p ~ )  zsinh (kFx) - (5.57) 3kF cosh (kF)  ' ' I T  = '('y T ,  cash (kF) 

C(  7, T )  is as yet undetermined. The boundary condition (5.53) also separates into 
two equations, one of which includes the r-dependent part of Po from (5 .30a) .  
Substituting (5 .57)  int,o the 7 derivative of (5.53) yields 

kF tanh kFC, + k2F2C = - (tanh (Icf) + kF) -- kF tanh (kF)  
2 

(5.58) 

This equation is the second-order analogue of the first-order equation that 
yielded the 7 dependence of exp ( - pu7). I n  the present case we note that exp ( -p7) 
on the right-hand side has the form of the solution to the differential operator on 
the left-hand side. Hence, this equation will yield a secular term of the form 
Texp ( -pu7). To suppress this secular term, we require that the right-hand side 
vanish. Thus, we finally obtain a differential equation for f ( T ) .  After some 

I) +~[$FZk2pZf+pkFtanh(kF) fT- - (Fz -  pk3F l) tanh(kF)f exp(-p7). 
0- 

manipulation we find f T + P f o  = O )  (5.59) 

(5.60) 

The solution satisfying the initial condition (5.30b) (i.e. f(0) = 1) is 

f =?P(-PT). (5.61) 

Hence, t,he solution to the elementary spin-up part of the problem is finally 
complete. 

Note that, when F vanishes, ,13 = 2 + k2. This is the form of the equivalent 
term for the homogeneous problem with harmonic forcing and it serves as a 
(mild) check on our solution. 
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In  the course of our development we have formulated the problem for PI 
as a natural step in the ordered system of equations. The evaluation o f f ( T )  is a 
consequence of applying the non-secular condition to Pl. We shaII not continue 
with the solution to the problem for Pl, since this is a higher-order quantity. Our 
goal has been to complete the solution for Po, so we now turn to the determination 
of the remaining part g. 

The system to obtain g is made up of (5.55)) the initial and one boundary 
condition in (5.30b) and either (5.45) or (5.49). It is convenient to divide g into 
a homogeneous part h and a particular part gp,  which takes care of the forcing 
term in (5.55). Thus, let g be written as 

g = gp  + NT, z ) ,  (5.62 a )  

where 
2 cosh (kFz) 
k cosh(kF) g =--  exP (-PT). 

Then conditions (5.303) can be expressed in terms of h as 

2 
h(T, - 1) = - k )  

2 cosh (kFz) 
k cosh (kF)  ’ h(0,x) = - 

(5.62 b) 

(5.63) 

where again we have made use of vertical symmetry. The partial differential 
equation (5.55) can then be written in terms of h: 

heeT - k2P2hT = ~-lh,see - k’(F2 + v-1) h,, + k4F2h. (5.61) 

And finally the conditions (5.45) and (5.49) become 

h,(T, - 1) = 0, fixed temperature, (5.65 a)  

h,,(T, - 1) = 0,  fixed heat flux. (5.65 b )  

The problems formulated here for h are similar to those posed by Pedlosky (1967)) 
Allen (1973) and Clark (1973), although in our case CT 9 E*, whereas Clark 
treats CT = O(E4). We concentrate here on the case with fixed-heat-flux bound- 
aries (condition 5.653). Since the boundary conditions (5.63) and (5.653) are 
independent of time, they must be satisfied by a time-independent part of h, 
which we denote by h,. Thus 

2 
k( 1 - (rF2) (5.66) 

cosh a3kF 

and we observe that h, is identical to the steady-state solution (5.9). We then write 
k as to 

coshk 1. ’ cosh kx 
-CTF2- rash kFz 

h, = 

h = h,+ 3 A,cosa,x, a, = (n+&)n, 
n=O 

and substitute it into (5.64), to obtain 

The initial condition (5.63) is satisfied by 

(5.67) 

(5.68) 
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Hence, the solution to the lowest-order problem is complete and we have 

2 cosh (kFz) 
- k cosh ( k F )  exp ( -,m -PT) + h, p - _ _  (5.70) 

where 

,it = kF coth (kF),  P = $,u2 - k2(F2 - 1) [$(v + 1) - (rl - 1) kF /sinh (ZkF)] 

and h is given by (5.66)-(5.69). 

6. Results for stratified solution 
We have calculated results for two cases to show how the system behaves as a 

function of time and space. The values of the parameters for the two cases are 
shown in table 1. The Ekman and Prandtl numbers are typical for laboratory 
experiments with thermally stratified water. The two values of F exhibit the 
behaviour when rotation is the more important constraint (F = 0.5) and when 
stratification is more important (F = 1-5). With k = 2 the graphs for Po and F’, 
are identical, since V, = #Po. The (dimensionless) homogeneous spin-up time 
for both cases is rh = El = 100. The stratified spin-up time is rs = 7,JkF coth (kF) 
and is given in units of r,, in table 1. 

In  figure 1 two sets of graphs for case 1 are shown for V, as a function of z. One 
set shows the complete zero-order interior solution y0 for different values of time 
(which we have taken in units of rs). Since an Ekman boundary layer is also 
present for shorter times, Sh by itself does not satisfy the boundary conditions until 
the boundary-layer flow is dissipated. The latter occurs by about five stratified 
spin-up times (longer for smaller v); and a t  this stage the flow has nearly achieved 
the steady-state form. 

Observe that initially the amplitude of V, approaches the steady-state solution 
from below, as it must, since initially T i  = 0. At about r = 3rs, the value of V, 
at  z = 0 reaches the steady-state value, then it overshoots it, and finally ap- 
proaches the steady value from above as time increases. This overshoot occurs 
for all values of z, but the closer to the boundary the later it occurs and the 
smaller the overshoot. For F < 1, (+ > 1, the simple spin-up solution penetrates 
farther into the interior than does the steady-state solution (as can be seen from 
(5.66) and (5.70)). Hence, the overshoot is associated with the simple spin-up 
solution. The amplitude of the overshoot is only 4% at, z = 0. 

The second set of graphs in figure 1 shows how the long-time part of T’, (i.e. 
the part corresponding to h in (5.70)) approaches the steady-state solution. 
The ‘initial’ distribution for h is equal to the distribution given by the elemen- 
tary spin-up solution as 7 -+ co (i.e. cosh (kFz)/cosh (kF)). Hence, h approaches 
h, from above. Also, since h corresponds to the long-time behaviour, there is no 
Ekman layer for this case, so that h satisfies the boundary conditions a t  all times. 

Figure 3 shows the same two sets of graphs for case 3. Since F > 1, the larger 
effect of stratification confines the elementary spin-up response to a smaller 
depth than that of the steady response, so there is no overshoot. At earlier times, 
however, the spin-up layer shows up as a boundary layer. Also, for this value of 
v, the steady state is essentially achieved after about 3 spin-up times. 
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E 0- K F 7 h h  

Case 1 1 0 - 4  7 2 0.5 0.77 
Case 2 10-4 7 2 1.5 0.33 

TABLE 1. Values of parameters for calculated results 
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FIGURE 1. The zonal interior velocity V,, shown as a function of z and time for case 1 of table 1 
( F  = 0-5). From left to right the dashed curves correspond to times 717, = 0.25,0.65,1.0,3.5. 
The solid curve is the steady-state solution. The complete spin-up solution approaches the 
steady solution from below, but overshoots it near the centre, and eventually settles down 
to the steady state. Thedotted curves correspond to h, the long-time part of the solution, at 
times 7/7,  = 0,  1.0, 2.5, from right to left.  This part of the solution approaches the steady 
state from above. Complete spin-up is effectively achieved when 7 = 57,. 

I n  recent experimental studies, Buzyna & Veronis (1971) and Saunders & 
Beardsley (1  974, private communication) have found that experiment and 
elementary spin-up theory show consistent disagreements. A. Barcilon, J. Lau, 
S. Piacsek & A. Warn-Varnar (1  974, private communication) have suggested that 
the discrepancy may be associated with the fact that the short-time behaviour 
has been neglected in the theoretical solutions. 

Even though our study includes only a single wavenumber, the results may 
shed some light on the observed discrepancy. For an experimental set-up with 
a roughly square cross-sectional geometry, the gravest Fourier or Bessel mode 
of the boundary velocity has the largest effect on the interior flow. The value of 
E = 2 corresponds to the gravest mode for a cross-sectional geometry where the 
horizontal scale is 471 times the half-depth. Apart from effects due to cylindrical 
spreading, this is approximately the geometry of the experiments cited above. 
Hence, we may expect that the theory with k = 3 may give qualitatively correct 
information near x = 0, where the main effect is due to the gravest mode. 
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v* 
FIGURE 2 .  The zonal interior velocity V, shown as a function of z and of time for case 2 of 
table 1 ( F  = 1.5). From left to right the dashed curves correspond to times 7/r8 = 0.25,0.65, 
1-0, 2.5. The solid curve is the steady-state solution. With F > 1, the complete spin-up 
solution approaches the steady solution monotonically with time (no overshoot). The dotted 
curves correspond to h, the long-time part of the solution, a t  times 7/7,  = 0, 1.0, from left 
to righ,t so h approaches the steady solution from below. 

1 1 - 3 4 5 6 

717, 

FIGURE 3. The elementary spin-up solution (dashed curve) and the complete lowest-order 
spin-up solution (solid curve) for V, a t  z = 0 as functions of time for P = 0.5. The elementary 
solution over-estimates the response. 
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1 2 3 4 5 6 

7 / 7 8  

FIGURE 4. The elementary spin up solution (dashed curve) and the complete lowest-order 
spin-up solution (solid curve) for V, at z = 0 shown as functions of time for F = 1.5. The 
elementary solution under-estimates the response. 

Figure 3 compares the time distribution of the complete response V, for case 1 
with that predicted by the simple spin-up theory. The elementary spin-up 
solution shows a more rapid growth than that of the complete solution. Thus, it 
over-estimates the spin-up response. Figure 4 shows that, for P > 1, the simple 
spin-up solution is an under-estimate of the complete response. The same qualita- 
tive discrepancy is present when experiment,s are compared with the simple 
solutions. Hence, it appears from our study that the observed discrepancy is a t  
least partly due to the fact that the simple solution is not quantitstively correct, 
even for times of the order of one spin-up time. 

We have presented results only for a single value of CT and for a single horizontal 
wavenumber. For larger k, the response is more confined to the boundary region 
and the spin-up time is shorter (Walin 1969). Hence, if the imposed boundary 
velocity is not a simple harmonic, but is decomposed into a Fourier series of 
harmonics, the gravest mode will penetrate farthest into the interior (see Buzyna 
& Veronis (1971) for a discussion of such a case). Also, the vertical structure of the 
steady solution is partly determined by the combination UP&. Hence, even for 
large P, sufficiently small can give rise to deep penetration. The physical reason 
for this is that small (T corresponds to large diffusion of heat, and the latter can 
serve to short circuit the effects of stratification. (Sakurai, Clark & Clark (1971) 
discussed this.) A third point is that, if the system has a relatively square cross- 
sectional geometry, the Fourier decomposition (Bessel functions for a cylinder) 
will always lead to structure in the vert'ical. For an actual experiment the final, 
solid-body rotation is achieved by lateral diffusion of properties from the side 
walls . 

7. Summary and discussion of the stratified problem 
The procedure that we have used involves interior and boundary-layer sets 

of equations a t  each order. At O(Eo) we obtain the hydrostatic-geostrophic 
system and a transient Ekman-layer solution with coefficients expressed in terms 
of the interior variables and functions of the longer-time variables r and T. 
The interior equations a t  O(Ef) include explicit time behaviour on two time 
scales, t and r .  By evaluating the boundary values of the variables with the 
help of those of the boundary-layer system, taking the limit as t -+a and 
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suppressing secular growth, we obtain the explicit dependence of the zero-order 
variables on r. This is the usual spin-up solution if long time is neglected. At this 
stage the final steady solution appears as an undetermined function. The interior 
equations a t  O(E)  involve all three times, t ,  r and T .  Again combining interior and 
boundary-layer variables a t  the boundary, we end up with an expression for the 
vertical velocity that involves all three time scales. It is a t  this stage also that the 
thermal boundary conditions enter explicitly. Suppressing secular growth in 
time yields a boundary condition for the long-time problem that is equivalent to 
the boundary condition for the steady problem when the boundary temperature 
is fixed. For the fixed-heat-flux problem, the proper boundary condition emerges 
when we require that the boundary layer not penetrate to the interior. We 
interpret this as a non-secular condition in space. A second boundary condition, 
obtained by making use of Ekman suction a t  this order, is evaluated for large 
values of t  and when secular growth on the r time scale is suppressed, the long- 
time correction to the ordinary spin-up solution is obtained. Having taken care 
of these special properties, we are left with a boundary-value problem which 
includes the long-time approach to the final steady-state solution. 

At O(E4) in the above procedure the problem for the first-order variables first 
appears. We have not carried out the analysis beyond the zero-order variables. 
However, it should be observed that, just as in the homogeneous problem, the 
lowest-order solution for short times r < 1 is O(E:), and the first-order correc- 
tion is of the same order. It is only for large values of t (or for r N 1 )  that our solu- 
tion is quantitatively dominant. 

At the end of $ 4  we mentioned that, in the homogeneous problem, one can 
ignore the t time scale and still derive the results for the r and T scales. For 
the stratified case that procedure runs into difficulties, because the zero-order 
boundary-layer equation for temperature reduces to &.. 7 0,  so the solution is 
6, = 0. Thus, for fixed temperature boundaries the condition 0: = 0 must be 
satisfied from the outset; and, as we mentioned earlier, this leads to an over- 
determined problem for Po. 

According to our analysis, the thermal boundary conditions should be applied 
only for the long-time problem. When the boundary temperature is fixed, 
the time a t  which the boundary condition is imposed follows from the non- 
secular requirement for Wp. When the heat flux is fixed, the argument is based on 
the separation of the variables into boundary-layer and interior parts. To 
preserve this separation for large times we require that the boundary-layer part 
not penetrate into the interior, and in this sense the system must be spatially 
non-secular . 

Having carried out the foregoing analysis, one can do the simpler analysis 
for only the T and T time scales, imposing the thermal conditions a t  the 
boundaries only for the long-time problem. This procedure would appear to  
be arbitrary without the justification given here. 

Equation (5.57) contains the term zsinh (IcYz), which looks secular in space. 
It would seem that the problem could be formulated in such a way as t o  remove 
this type of secularity also. We have not attempted to do so here, partly because of 
the secularity is associated with kF rather than E4, and therefore is not affected 
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by our ordering scheme, and partly because it has to do with completing the 
solution for PI, which is not essential for our lowest-order result. 

The complete solution for Po contains the term cosh kFz exp ( -pr  -PT), 
where the factor exp ( -PT) is the long-time correction. For moderately large 
values of kF, the exponential time dependence becomes 

-pr-PT-+-kFE*t 1 +  --- kFE* . [ (: iJ 1 
Hence, we see that t,he expansion scheme is valid provided that kPE4 < 1 
or kF < E-9 (i.e. the thickness of the elementary spin-up layer must exceed 
the thickness of the Ekman layer). This restriction is obviously necessary for our 
approach, in which the Ekman layer is treated as 'thin.' 

For astrophysical applications, the limits kF 9 1 and [r < 1 are important. 
For this range the time dependence becomes 

-pr -PT -+ - kFE*t( 1 - ( k F / 2 ( ~ )  E*). 

The condition for convergence is now kF/u < ZE-t, so that the restrictions 
on the values of k ,  F and CT are more stringent than we assumed initially. We 
note, too, that in this limit the elementary spin-up layer is spun up more slowly, 
because of the long-time correction (P is negative). However, complete spin-up 
is achieved more rapidly. Thus, the elementary spin-up process is not so per- 
tinent in this case, even though it lasts longer. 

Sakurai et al. (1971) pointed out the following. (i) For (T > O(E4) the system is 
much like the one with (T = O(Eo) (although for the validity of the simple spin-up 
solution it is necessary that kF/u < E-9). (ii) For CT < O(E4) thermal diffusion 
is so strong that thermal effects are short-circuited and the fluid spins up as if 
i t  were homogeneous. The case with [r = O(E4) is special, since the diffusion 
term becomes O(E*), so Ekman suction is modified by diffusion. For this case, 
it is easy to show that the lowest-order closed system reduces to 

( l /V*) V2P033 - Posz7 + k2F2Po, = 0, 

where (T = cr"E4, (T* = O(Eo), r = Ett. If spatial derivatives are O(Eo), the charac- 
teristic time is O ( ( T * P ~ ~ ~ E - * O - ~ )  or O ( ( T F ~ ~ ~ E - ~ O - ~ ) .  This time is essentially the 
Eddington-Sweet time (Howard, Moore & Spiegel 1967); it is used as the basic 
time in Clark's (1973) treatment. For this problem with fixed temperature 
boundaries, the boundary condition on the interior flow obtained from the 
Ekman layer is 

Hence, time appears in this analysis only in the form of the Eddington- 
Sweet time. Elementary spin-up time per se does not enter a t  all; nor does the 
spatial structure of the simple spin-up solution. Clark (1973) treated this problem 
in some detail; the interested reader is referred to his paper for the analysis. 
We cannot compare our detailed results with his because the case (T = O(E9) 
must be analysed ab initio as special. The exact solution for the latter problem can 
be derived by the same procedure we have used to derive h; but the eigenfunc- 
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tions for the infinite series are more complicated than the simple trigonometric 
functions we used in (5.67). 
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